

IAUS-REG-NUMBER: IAUS-49

NAME: Konstantinos Bouvis AFFILIATION: National Technical University of Athens CONTRIBUTION: Poster TITLE: A Multi-Wavelength Analysis of Planetary Nebula NGC 3132 using MUSE, JWST and SPITZER data. AUTHORS: Konstantinos Bouvis AFFILIATIONS: National Technical University of Athens - Institute for Space Applications and Remote Sensing

ABSTRACT:

Integral field spectroscopy or imaging spectroscopy has been established as an important technique for the spatial analysis of extended ionized nebulae. MUSE data have been used to perform a two-dimensional spectroscopic analysis of PN NGC 3132. This particular planetary nebula was selected for the early observing phase of JWST and a multiple stellar system has been found with significant emission from molecular Hydrogen. JWST and archival Spitzer image data have also been combined to examine the radial distribution of various near-IR emission line ratios and IRAC colors. NGC 3132 is described by an average electron temperature 9500 K and electron density ranges from 500-900 cm^(-3). No variations in the chemical composition of the nebular gas were found. The radial analysis of optical and infrared lines has revealed a close link between the c(H β) and H2 emission lines. This suggests the presence of significant amount of dust that prevents the dissociation of molecular Hydrogen. The maps of the physico-chemical properties of the nebula are compared with the prediction of a 3D photoionization model in order to constrain its physical characteristics.